Given an integer $n$, I constructed a simplicial complex $\tau_{n}(\mathbb{Z})$, called the nth Torus Complex over $\mathbb{Z}$, on which $S L(n, \mathbb{Z})$ acts simplicially. The construction is analogous to that of the curve complex of a 2 dimensional torus, a complex on which $S L(2, \mathbb{Z})$ acts. In fact, $\tau_{2}(\mathbb{Z})$ is the Curve Complex of the Torus. I then found an equivalent algebraic definition of this complex that allowed me to extend the construction to rings other than $\mathbb{Z}$. The following table show some of the properties of $\tau_{n}(R)$ that are consequences of properties of the ring $R$.

| n | Properties of $R$ | Properties of $\tau_{n}(R)$ |
| :---: | :---: | :---: |
| 2 | $R=\mathbb{Z}$ | Farey Graph |
| 2 | $R$ generated additively by units | link of every vertex is connected |
| 2 | $R=\mathbb{Z}[\sqrt{-n}], n=1,3$ | $\pi_{1}=\{1\}$, not contractible for $n=-1$ |
| 3 | $R=\mathbb{Z}$ | connected, $\pi_{1}=\{1\}$, diameter 2 |
| n | Euclidean | connected |
| $n \geq 3$ | $R=\mathbb{Z}$ | $\pi_{n-2}\left(\tau_{n}(\mathbb{Z})\right) \cong\{1\}$ |

The Unoriented Torus Complex, denoted $\tau_{n}$, is the simplicial complex whose vertices correspond to isotopy classes of essential unoriented co-dimension 1 tori. A $k$ - 1 -simplex of $\tau_{n}(k-1 \leq n)$ is spanned by $k$ vertices if and only if the codimension one tori to which these vertices correspond intersect transversally in exactly one codimension $k$ torus after isotopy. This topological definition can be extended to the following algebraic definition.

The nth Torus Complex over $R$ ( R a commutative ring with one), denoted $\tau_{n}(R)$, is the simplicial complex whose vertices correspond to elements of an $R$-basis for $R^{n}$ modulo sign. A $k-1$-simplex of $\tau_{n}(R)(k-1 \leq n)$ is spanned by $k$ vertices if and only if those vertices form a subset of an $R$-basis of $R^{n}$.

Theorem 1. $\tau_{3}(\mathbb{Z})$ is simply connected and $S L(3, \mathbb{Z})$ acts on $\tau_{3}(\mathbb{Z})$ cocompactly (but not properly). Taking the fundamental group of the complex of groups obtained by labeling cells in the quotient by their stabilizer groups yields the following presentation for $S L(3, \mathbb{Z})$.

$$
\begin{aligned}
& \langle a, b, c| a^{4}, b^{6}, c^{2}, a^{2} b^{3},\left(a^{2} c a b c\right)^{2},\left(c a b c b^{2}\right)^{3},(a c)^{3} \\
& \left.a b(c a b c)(a b)^{-1}(c a b c)^{-1}, b a(c b a c)(b a)^{-1}(c b a c)^{-1}\right\rangle
\end{aligned}
$$

